Neural Network Super Resolution getting good, fast

Gepostet vor 5 Monaten, 5 Tagen in #Design #Science #Tech #AI #AlgoCulture

Share: Twitter Facebook Mail

enhance

Neulich bloggte ich über die K.I.-Version der Zoom & Enhance-Meme und meinte noch, das seien ja nur 64x64 Pixel und die Ergebnisse wären ja noch eher so mittel. Scratch that. Ein neues Paper stellt eine neue Methode (SRGAN) zum neural-network-gestützten hochrechnen von Bildern vor, das dramatisch bessere Ergebnisse erzielt, in dem es Informationsverluste in den Texturen durch gelernte Algo-Pattern ausgleicht. Zoom & Enhance is coming!

enhance2

Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details
when we super-resolve at large upscaling factors? During image downsampling information is lost, making superresolution a highly ill-posed inverse problem with a large set of possible solutions. The behavior of optimizationbased super-resolution methods is therefore principally driven by the choice of objective function. Recent work has largely focussed on minimizing the mean squared reconstruction error (MSE). The resulting estimates have high peak signal-to-noise-ratio (PSNR), but they are often overly smoothed, lack high-frequency detail, making them perceptually unsatisfying.

In this paper, we present superresolution generative adversarial network (SRGAN). To our knowledge, it is the first framework capable of recovering photo-realistic natural images from 4× downsampling. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss function motivated by perceptual similarity instead of similarity in pixel space. Trained on 350K images using the perceptual loss function, our deep residual network was able to recover photo-realistic textures from heavily downsampled images on public benchmarks.

Automatic Handgun Detection via Machine Learning

The latest Step into an OCP-approved Ed-209-compatible Future: Automatic Handgun Detection Alarm in Videos Using Deep Learning (PDF). Usage Guide:…

ALF-Trump and other algorithmic Abominations

Großartiger neuer Twitter-Feed von Chris Rodley: Algorithmic Horror – Concept art for horror movies generated by an algorithm mit so…

Algorithmic Shape Collages

Interessantes Paper der Uni Hong Kong über automatisierte Shape Collagen (mit geilem Titel auch): Pyramid of Arclength Descriptor for Generating…

Cube-Transformation-Bot

Ganz großartiger Bot von Andrew Heumann: Tweet2Form: The Formalist Tweetbot. Das Teil versteht 11 verschiedene Befehle für 3D-Transformationen, führt die…

Cybernetic Serendipity 1968

Nice Walkthrough for the 1968 Cybernetic Serendipity-Exhibition at the Institute of Contemporary Arts in London. Some cool, early, experimental Machine-Typography…

Der Sünden-Bot

Mein Buddy Gregor macht wieder Unfug mit Tweetie-Bots, diesmal eine Metapher auf die panische Scheindebatte über den Angriff der killeralienmutant…

Google Brain does Zoom & Enhance

Vor grob einem halben Jahr bloggte ich über eine Reihe von Papers, die eine neue AI-Anwendung vorstellten: Image Super-Resolution. Die…

NSA-Powerpoint-Styletransfer: Snowden.ppt

Matthew Plummer-Fernandez hat einen Style-Transfer-Algorithmus auf verschiedene NSA-Powerpoint-Slides trainiert und daraus ein paar Snowden-Portraits generiert: Snowden.ppt. Machine Learning style transfer…

Algorithmic Cyclops

Mario Klingemann trainiert wieder irgendwelche Neural Networks die wieder irgendwelche komischen Sachen generieren. Diesmal hat er ’nen Algorithmus auf vintage…

Hieronymus Bosch dreaming of Sesame Street

Chris Rodley dreht nach dem Trump Clan ein paar klassische Gemälde von Picasso und Hieronymus Bosch durch den Sesamstraßen-Neural-Network-Wolf:

Algorithmic Napoleon

/user/vic8760 zieht Jacques-Louis Davids Napoleon Crossing the Alps, MC Escher und die Mona Lisa durch einen FineArt-Style-Transfer. Nice!