Fibonacci Everything

Gepostet vor 11 Monaten, 19 Tagen in #Design #Science #Fibonacci #GoldenRatio #Mathematics

Share: Twitter Facebook Mail

Exhibit 1:


Exhibit 2: „i made a golden ratio bot. because why not.“


Exhibit 3: Fibonacci Flim-Flam

Fibonacci Foolishness.

A search of the internet, or your local library, will convince you that the Fibonacci series has attracted a lunatic fringe of Fibonacci fanatics who look for mysticism in numbers and in nature. You will find fantastic claims:

The "golden rectangle" is the "most beautiful" rectangle, and was deliberately used by artists in arranging picture elements within their paintings. (You'd think that they'd always use golden rectangle frames, but they didn't.)

  • The patterns based on the Fibonacci numbers, the golden ratio and the golden rectangle are those most pleasing to human perception.
  • Mozart used φ in composing music. (He liked number games, but there's no good evidence that he ever deliberately used φ in a musical composition.)
  • The Fibonacci sequence is seen in nature, in the arrangement of leaves on a stem of plants, in the pattern of sunflower seeds, spirals of snail's shells, in the number of petals of flowers, in the periods of planets of the solar system, and even in stock market cycles. So pervasive is the sequence in nature (according to these folks) that one begins to suspect that the series has the remarkable ability to be "fit" to most anything!
  • Nature's processes are "governed" by the golden ratio. Some sources even say that nature's processes are "explained" by this ratio.

Of course much of this is patently nonsense. Mathematics doesn't "explain" anything in nature, but mathematical models are very powerful for describing patterns and laws found in nature. I think it's safe to say that the Fibonacci sequence, golden mean, and golden rectangle have never, not even once, directly led to the discovery of a fundamental law of nature. When we see a neat numeric or geometric pattern in nature, we realize we must dig deeper to find the underlying reason why these patterns arise.

Cellular Automata Cube Conways Game of Life als 3D-Spielzeug mit Cubes und Spheres und Schnickschnack als Evolution-Nullpunkt, von wo aus die ganzen…

Superconducting Quantum Levitation on a 3π Möbius Strip

„Quantum levitation on a 3π Möbius strip track! Watch the superconductor levitate above the track and suspend below the track,…

Stereographic Torus Knot

I'm not sure what's going on here but I like it: „This is very similar to Rise Up, though with…

4D Monkey Dust

Henry Segerman erklärt vierdimensionale Affen und Stereoprojektion: Die 3D-Prints von Segerman habt ihr sicher schon irgendwo gesehen, er macht diese…

4D Toys

4D Toys, eine nette iPhone-App (hab sie noch nicht installiert, DL läuft grade), ein Spielplatz voller Bauklötze aus der vierten…


I cringe at (most of) this guys music choice and pretentious infotext gibberish, but his 3D-fractals kick some serious ass,…

Tarantulas calculate Distance with their 3 billion eyes

Spinnen berechnen ihre Wege mit ihren gegenüberliegenden Augenpaaren und konstruieren spinnensinnmäßig ein rechtwinkliges Dreieck, auf dessen Hypotenuse sie sich dann…

Digital-Uhr in Conways Game of Life

Großartig: Eine Digital-Uhr in John Horton Conways zweidimensionalen zellulären Automaten: Get the design from this gist. Copy the whole file…

Raymond Smullyan R.I.P.

Logiker Raymond Smullyan ist im stolzen Alter von 97 Jahren gestorben. Der Mann war neben seinen mathematischen und philosophischen Arbeiten…

2-Dimensional Mandelbrot made from 3-Dimensional Fractal

Ab dem zweiten Satz von Peter Karpov raff ich sein Posting nur noch so zu 10%, aber soweit ich das…

Alexander Graham Bell kissing his wife Mabel in a Tetrahedron

Alexander Graham Bell, Erfinder des Telefon, knutscht seine Frau in einem Tetraeder, der alte Polyeder-Fetischist. (via Archillect Links)