Google AI learns important Stuff

Gepostet vor 1 Jahr, 1 Monat in #Tech #AI #AlgoCulture

Share: Twitter Facebook Mail

bask

Neues Paper von Google AI, deren Bilderkennung jetzt zwischen wichtigen und unwichtigen Inhalten in Videos unterscheiden kann. Vor zwei Monaten reichte es noch „nur“ für auflistende Bildbeschreibungen, jetzt weiß das Teil dank einer „Aufmerksamkeitsmaske“, welche Gegenstände oder Akteure am bedeutendsten sind. Der Algorithmus benötigt allerdings eine Videoquelle, um die Wichtigkeit aus einer Timeline zu berechnen, mit Fotos funktioniert das (noch) nicht. Natürlich ideal für die Überwachung von öffentlichen Plätzen und sowas. PDF: Detecting events and key actors in multi-person videos.

Multi-person event recognition is a challenging task, often with many people active in the scene but only a small subset contributing to an actual event. In this paper, we propose a model which learns to detect events in such videos while automatically “attending” to the people responsible for the event. Our model does not use explicit annotations regarding who or where those people are during training and testing. In particular, we track people in videos and use a recurrent neural network (RNN) to represent the track features. We learn time-varying attention weights to combine these features at each time-instant. The attended features are then processed using another RNN for event detection/classification.

Since most video datasets with multiple people are restricted to a small number of videos, we also collected a new basketball dataset comprising 257 basketball games with 14K event annotations corresponding to 11 event classes. Our model outperforms state-of-the-art methods for both event classification and detection on this new dataset. Additionally, we show that the attention mechanism is able to consistently localize the relevant players.

Algorithmic Image-Watermark Remover

Google hat ein neues Paper über die automatische Entfernung von Wasserzeichen in Pics, netterweise nennen sie das Paper „On the…

10 PRINT CHR$ (205.5 + RND (1)); on a Commodore Pet

10 PRINT CHR$ (205.5 + RND (1)); 20 GOTO 10 ist sowas wie ein Miniatur-Programm in Basic für Generative Graphics,…

DeepMind releases StarCraft AI

Google und Blizzard haben ihre StarCraft AI veröffentlicht: Testing our agents in games that are not specifically designed for AI…

Self-Driving Cars hacked with Love and Hate

Wissenschaftler der Uni Washington haben die Computer-Vision-Systeme von selbstfahrenden Autos gehackt – indem sie Love und Hate in colorierten Pixelfonts auf…

Cellular Automata Cube

Cubes.io: Conways Game of Life als 3D-Spielzeug mit Cubes und Spheres und Schnickschnack als Evolution-Nullpunkt, von wo aus die ganzen…

Neural Network-Faces synched to Music

„My first attempt to map a song made by @kamptweets onto GAN generated proto-faces.“ Bohemian Rhapsody next. The Three Nightingans.…

AI-Animations with human Sounds

Google vor ein paar Tagen so: „Yay, wir haben hier 'ne neue AI-based Animation-Tech, hooray!“ (Paper) Hayayo Miyazaki über AI-based…

Visual AI-Spaces Auto-Pilot

Ich habe schon ein paar mal über Mario Klingemanns Arbeiten hier gebloggt, derzeit jagt er Neural Networks durch Feedback-Loops und…

Synthesizing Obama from Audio

Im Mai bloggte ich über ein damals noch nicht veröffentlichtes Paper zur SigGraph2017, in dem sie eine Methode für generative…

Generative Pearls

Cool fractal and generative art by Julien Leonard. I dig his explanation from his about-page: „I create algorithms that connect…

Moarph

Mario Klingemann does some weird shit again with CycleGAN Feedback Loops (Neural Networks feeding their results back to each other).…