Google AI learns important Stuff

Gepostet vor 11 Monaten, 27 Tagen in #Tech #AI #AlgoCulture

Share: Twitter Facebook Mail

bask

Neues Paper von Google AI, deren Bilderkennung jetzt zwischen wichtigen und unwichtigen Inhalten in Videos unterscheiden kann. Vor zwei Monaten reichte es noch „nur“ für auflistende Bildbeschreibungen, jetzt weiß das Teil dank einer „Aufmerksamkeitsmaske“, welche Gegenstände oder Akteure am bedeutendsten sind. Der Algorithmus benötigt allerdings eine Videoquelle, um die Wichtigkeit aus einer Timeline zu berechnen, mit Fotos funktioniert das (noch) nicht. Natürlich ideal für die Überwachung von öffentlichen Plätzen und sowas. PDF: Detecting events and key actors in multi-person videos.

Multi-person event recognition is a challenging task, often with many people active in the scene but only a small subset contributing to an actual event. In this paper, we propose a model which learns to detect events in such videos while automatically “attending” to the people responsible for the event. Our model does not use explicit annotations regarding who or where those people are during training and testing. In particular, we track people in videos and use a recurrent neural network (RNN) to represent the track features. We learn time-varying attention weights to combine these features at each time-instant. The attended features are then processed using another RNN for event detection/classification.

Since most video datasets with multiple people are restricted to a small number of videos, we also collected a new basketball dataset comprising 257 basketball games with 14K event annotations corresponding to 11 event classes. Our model outperforms state-of-the-art methods for both event classification and detection on this new dataset. Additionally, we show that the attention mechanism is able to consistently localize the relevant players.

Floral Algorithm dreams of Dinosaurs

Chris Rodley (Twitter) hat seinen Styletransfer-Bot mit Blumen gefüttert und auf Dinosaurier angesetzt.

3D-Visualized Typography-Ideaspace

Ich habe schon einige AI-Visualisierungen von Fonts gesehen, also sortierte Abbildungen des visuellen Idea-Space der Zeichensätze (also genau wie Skateboards…

Neural Network sorts Vibrators

Sabrina Verhage trainierte ein Neural Network auf Vibratoren und sortierte sie dann nach visuellen Merkmalen wie Farbe, Form, Pimmelrealismus und…

Imaginary People

Mike Tyka bastelt fiktive Gesichter aus zweistufigen Neural Networks: Portraits of imaginary People. Das erste generiert die herkömmlichen Kunstfressen in…

Neural Network dreams your Flesh

Das holländische Radio NPO hat eine eigene Instanz von Christopher Hesses Pix2Pix auf 'nem Server installiert und dort kann man…

360° Photogrammetry from abandoned Malls and Basel

„A 360° trip through photogrammed city pieces of Basel.“ „A three-dimensional photogrammetric amalgamation of abandoned shopping malls, digitally reconstructed from…

Exploring Idea-Space with algorithmic Ableton Novelty Search

In meinem Vortrag (u.a. dieses Wochenende in Offenbach auf dem Bended Realities Festival) rede ich viel über das, was ich…

Artistic Style-Transfer Video-Synthesis

Daniel Sýkora hat ein neues Spielzeug gecoded: Example-Based Synthesis of Stylized Facial Animations. Hier die Ergebnisse: Über Sýkoras StyLit-Technik für…

Neural Network Genesis Alpha

Douglas Summers hat das erste Buch Genesis der Bibel mit Neural Network Voodoo in Worte übersetzt, die allesamt mit dem…

Algo-Faces reconstruced from Monkey Brainwaves

Vor drei Wochen erst bloggte ich über die visuelle Rekonstruktion von Gedanken anhand von EEG-Aufzeichnungen, mit denen man Neural Networks…

Anti-AI-AI cools your ear when it hears AI-Voices

Nette Spielerei der australischen Kreativagentur DT, ein Wearable-AI-Device mit einem Neural Network, das auf synthetische Stimmen trainiert wurde und das…