Google AI learns important Stuff

Gepostet vor 7 Monaten, 21 Tagen in #Tech #AI #AlgoCulture

Share: Twitter Facebook Mail

bask

Neues Paper von Google AI, deren Bilderkennung jetzt zwischen wichtigen und unwichtigen Inhalten in Videos unterscheiden kann. Vor zwei Monaten reichte es noch „nur“ für auflistende Bildbeschreibungen, jetzt weiß das Teil dank einer „Aufmerksamkeitsmaske“, welche Gegenstände oder Akteure am bedeutendsten sind. Der Algorithmus benötigt allerdings eine Videoquelle, um die Wichtigkeit aus einer Timeline zu berechnen, mit Fotos funktioniert das (noch) nicht. Natürlich ideal für die Überwachung von öffentlichen Plätzen und sowas. PDF: Detecting events and key actors in multi-person videos.

Multi-person event recognition is a challenging task, often with many people active in the scene but only a small subset contributing to an actual event. In this paper, we propose a model which learns to detect events in such videos while automatically “attending” to the people responsible for the event. Our model does not use explicit annotations regarding who or where those people are during training and testing. In particular, we track people in videos and use a recurrent neural network (RNN) to represent the track features. We learn time-varying attention weights to combine these features at each time-instant. The attended features are then processed using another RNN for event detection/classification.

Since most video datasets with multiple people are restricted to a small number of videos, we also collected a new basketball dataset comprising 257 basketball games with 14K event annotations corresponding to 11 event classes. Our model outperforms state-of-the-art methods for both event classification and detection on this new dataset. Additionally, we show that the attention mechanism is able to consistently localize the relevant players.

Automatic Handgun Detection via Machine Learning

The latest Step into an OCP-approved Ed-209-compatible Future: Automatic Handgun Detection Alarm in Videos Using Deep Learning (PDF). Usage Guide:…

ALF-Trump and other algorithmic Abominations

Großartiger neuer Twitter-Feed von Chris Rodley: Algorithmic Horror – Concept art for horror movies generated by an algorithm mit so…

Algorithmic Shape Collages

Interessantes Paper der Uni Hong Kong über automatisierte Shape Collagen (mit geilem Titel auch): Pyramid of Arclength Descriptor for Generating…

Cube-Transformation-Bot

Ganz großartiger Bot von Andrew Heumann: Tweet2Form: The Formalist Tweetbot. Das Teil versteht 11 verschiedene Befehle für 3D-Transformationen, führt die…

Cybernetic Serendipity 1968

Nice Walkthrough for the 1968 Cybernetic Serendipity-Exhibition at the Institute of Contemporary Arts in London. Some cool, early, experimental Machine-Typography…

Der Sünden-Bot

Mein Buddy Gregor macht wieder Unfug mit Tweetie-Bots, diesmal eine Metapher auf die panische Scheindebatte über den Angriff der killeralienmutant…

Google Brain does Zoom & Enhance

Vor grob einem halben Jahr bloggte ich über eine Reihe von Papers, die eine neue AI-Anwendung vorstellten: Image Super-Resolution. Die…

NSA-Powerpoint-Styletransfer: Snowden.ppt

Matthew Plummer-Fernandez hat einen Style-Transfer-Algorithmus auf verschiedene NSA-Powerpoint-Slides trainiert und daraus ein paar Snowden-Portraits generiert: Snowden.ppt. Machine Learning style transfer…

Algorithmic Cyclops

Mario Klingemann trainiert wieder irgendwelche Neural Networks die wieder irgendwelche komischen Sachen generieren. Diesmal hat er ’nen Algorithmus auf vintage…

Hieronymus Bosch dreaming of Sesame Street

Chris Rodley dreht nach dem Trump Clan ein paar klassische Gemälde von Picasso und Hieronymus Bosch durch den Sesamstraßen-Neural-Network-Wolf:

Algorithmic Napoleon

/user/vic8760 zieht Jacques-Louis Davids Napoleon Crossing the Alps, MC Escher und die Mona Lisa durch einen FineArt-Style-Transfer. Nice!