A.I. predicts High-Fives, Hugs and Kisses

Gepostet vor 11 Monaten, 3 Tagen in #Tech #AI #AlgoCulture #HighFive

Share: Twitter Facebook Mail

kiss

Im AI-Lab vom MIT haben sie ein paar Neural Networks auf Umarmungen, Knutschen und High-Fives aus Youtube-Clips und Fernsehserien trainiert, die sie dann vorhersagen konnten: Teaching machines to predict the future. Die Erfolgsquote ist zwar noch gering (43%), aber Körpersprache lesende Maschinen, die daraufhin Motive und Handlungen von Menschen vorhersagen, dürften bei der jetzigen Innovationsgeschwindigkeit nicht mehr allzulange weit weg sein. Und Menschen können zukünftige Aktionen ebenfalls nur mit 71% Wahrscheinlichkeit vorhersagen, Maschinen dürften uns hierbei schon sehr bald überholen. Und nun addiere man Predictive Crime und Überwachungskameras zu dieser Gleichung. Yay!

This week researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have made an important new breakthrough in predictive vision, developing an algorithm that can anticipate interactions more accurately than ever before. Trained on YouTube videos and TV shows such as “The Office” and “Desperate Housewives,” the system can predict whether two individuals will hug, kiss, shake hands or slap five. In a second scenario, it could also anticipate what object is likely to appear in a video five seconds later. […]

After training the algorithm on 600 hours of unlabeled video, the team tested it on new videos showing both actions and objects. When shown a video of people who are one second away from performing one of the four actions, the algorithm correctly predicted the action more than 43 percent of the time, which compares to existing algorithms that could only do 36 percent of the time.

In a second study, the algorithm was shown a frame from a video and asked to predict what object will appear five seconds later. For example, seeing someone open a microwave might suggest the future presence of a coffee mug. The algorithm predicted the object in the frame 30 percent more accurately than baseline measures, though the researchers caution that it still only has an average precision of 11 percent.

It’s worth noting that even humans make mistakes on these tasks: for example, human subjects were only able to correctly predict the action 71 percent of the time.

Neulich in Darmstadt: Das Geile Neue Internet – Potential of (visible) Infinite Idea Space

[update] Hier ein Livestream auf Facebook. Heute abend erzähle ich auf dem Webmontag Darmstadt – Born and raised Heiner, gude!…

Smile-Filtering a Face until there is no Face left to smile-filter

Gene Kogan: „just in case you were wondering, this is what happens when you repeatedly run FaceApp’s smile filter until…

Neural Network dreams your Dreams

Wissenschaftler können bereits seit Jahren Bilder aus Gehirnscans extrahieren, also: Tatsächlich ein Abbild davon schaffen, was wir sehen. Die Resultate…

Neural Network dreams of riding a Train

Tolle Arbeit von Damien Henry: Ein Neural Network, ein sogenannter „prediction algorithm“, der Frames eines Videos „errät“, ausgehend vom jeweils…

4 AI-Obamas learn Algo-Lipsynch from Audio

Seit ich über die neuen Möglichkeiten von Machine Learning bezüglich Computer Vision und der Generation von Bildern schreibe, vor allem…

Daddy Cthulhu Cumshot: Weird Algo-Poetry from repetitive Cut'n'Paste-Autocomplete

Das LanguageLog hat die „psychedellic“ AI-„Dreaming of“-Technik auf Google Translate angewandt und dort regelmäßige Sprach/Zeichen-Muster („Iä! Iä! Iä! Iä! Iä!…

Neural Networks for Character Control

Daniel Holden, Taku Komura und Jun Saito haben ein Neural Network auf Character-Animationen trainiert, mit dem Figuren in Games und…

Predictive Policing for Banksters

Schönes Ding von Sam Lavigne, Predictive Policing für Wirtschaftskriminalität im Finanzsektor, 'ne Robocop-App für Bankster. White Collar Crime Risk Zones…

AI Voice-Cloning

Vor ein paar Monate veröffentlichte Google sein WaveNet, ein auf Stimmen trainiertes Neurales Netzwerk mit einem deutlichen Qualitätssprung gegenüber bisherigen…

Neural Network cooks with Cthulhu

Janelle Shane spielt mit Neural Networks rum und hat eins davon auf Lovecraft trainiert. Dann hat sie das Neural Network…

Next Level, photorealistic Style-Transfer

In ihrem neuen Paper stellen Fujun Luan, Sylvain Paris, Eli Shechtman und Kavita Bala eine neue Style-Transfer-Methode vor: Figure 1:…